

TRANSITION OF STAB TECHNOLOGY

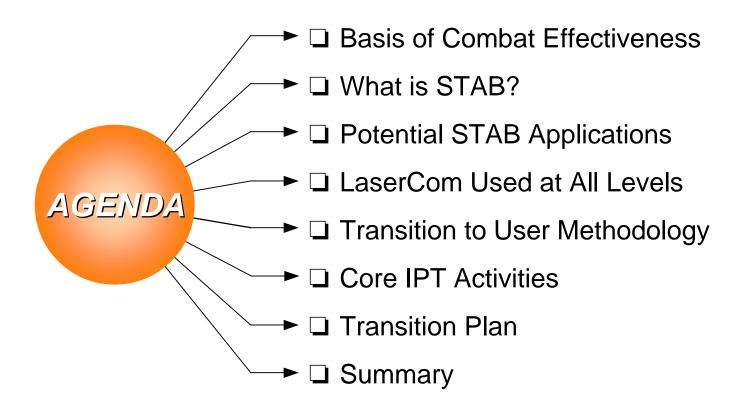
ENHANCING WARFIGHTER CAPABILITIES

August 2000

Brian Matkin

Chief, Concepts & Analysis Division AMC - Smart Weapons Management Office

email: brian.matkin@redstone.army.mil Tel: (256) 842-



PURPOSE

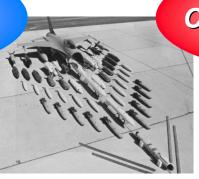
Identify Planning Process and Key Players in Transitioning STAB Technology

BASIS OF COMBAT EFFECTIVENESS

The Essential Attributes of an Effective Fighting Force

Land / Sea / Air

MOVE



First / Farthest / Accurate

To WIN

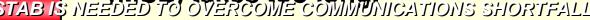
Secure / Dependable

SHOOT

COMMUNICATE

Approved for Public Release, Distribution Unlimited

SHORTFALLS IN **TACTICAL COMMUNICATIONS**

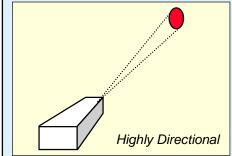


MSE communications assets are currently being used throughout the military.

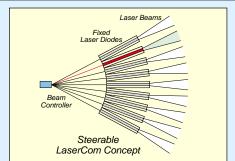
- □ RF communications are not always effective.
- ☐ Frequency allocation is a serious problem.
- Bandwidth is too narrow for some traffic needs.
- □ RF omni-directional emissions allow targeting of our systems.
- ☐ Can not be used during periods of radio silence.
- □ RF traffic is easily intercepted by the enemy.
- □ RF signals are easily jammed.
- ☐ Time to set up and relocate RF stations STAB IS NEEDED TO OVERCOME COMMUNICATIONS SHORTFALLS

WHAT IS STAB?

Mechanical Steering


Electronic Steering

Traditional Dish Radar


Phased Array Radar

LaserCom Technology Growth

Technology exploitation of mechanically, electronically, and optically steered approaches

Technology

TACTICAL BENEFITS OF LASERCOM

- ☐ Supports all tactical operations:
 - * Offense, defense, movement to contact.
 - * Clandestine operations.
 - * Naval / Marine Corps maneuvers.
 - * Satellite link -- enhanced COMSEC.
- □ Broad potential bandwidth:
 - * Transmits voice, data, & images.
 - * Huge throughput
- Narrow beamwidth:
 - * Highly directional secure.
 - * Tactically useful range.
- Eliminates many miles of messy wires.
- ☐ Provides basis for tactical internet system.
- Extends frequency allocation -- less conflict.
- Less vulnerable to enemy jamming.
- ☐ Provides secure comms during radio silence.
- ☐ Eliminates RF signature (laser less targetable).

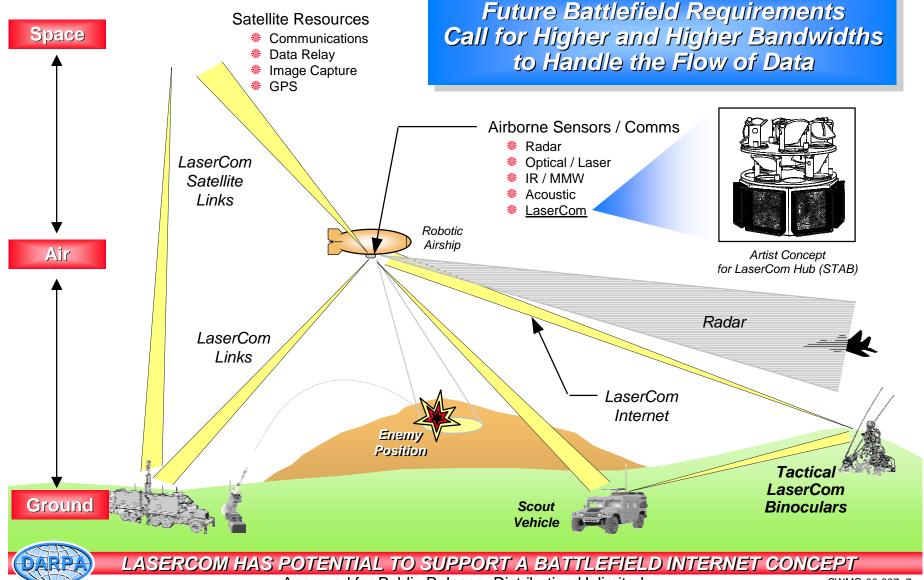
Transmits at 1.2 Gbps?

- 800 lb. of paper w/text/sec
- 80,000 pages/sec
- 2 encyclopedias/sec
- 100 TV channels
- 2,000 lb. of satellite radio transmitters 2,000 watts

One 29 lb. LaserCom transceiver using 75 watts has this capability

Communications on demand

Covert Operations



LASERCOM HAS APPLICATIONS AT ALL LEVELS

MODES AND MISSIONS OF STAB SYSTEMS

L

A

S

Ε

R

C

0

M

■ Modes of operation:

- * Carrier platforms are mobile and transmit:
 - Ground-to-ground (mounted & dismounted).
 - Ground-to-air / air-to-ground.
 - Air-to-air.
 - Space-to-air / ground-to-space.
- * Active: Transmits to other LaserCom devices.
- * Passive: Return data on the carrier wave of an active device (space and dismounted use primarily in an internet mode).

☐ Platforms for LaserCom:

- Satellites (high performance / airships / UAVs)
- * Ships
- * Ground vehicles:
 - Armored (tanks / APCs).
 - * HMMWV.
- * Stationary comm site (part of MSE system).
- Dismounted troops / scouts.

PRIMARY STAB APPLICATIONS

How Can STAB Technology Support the Warfighter?

Communications

- □ Broad Bandwidth
- ☐ Secure /Narrow Beam
- ☐ High Volume Traffic
- □ Less Vulnerable
- □ No RF Emissions
- ☐ Highly Directional
- □ Difficult to Jam
- ☐ Portable / Lightweight
- ☐ Potential Internet Hub
- ☐ Easy Relay Capability
- □ Auto-Positioning Data

STAB Applications

Infrared Countermeasures

- □ In-Band to Sensors
- ☐ Locate Threat Sensors (Air and Ground)
- ☐ Engage Enemy Incoming Missiles
- □ Disable Threat Optics
- □ AD Targeting Assist
- BDA for AD Targeting

Target Designation

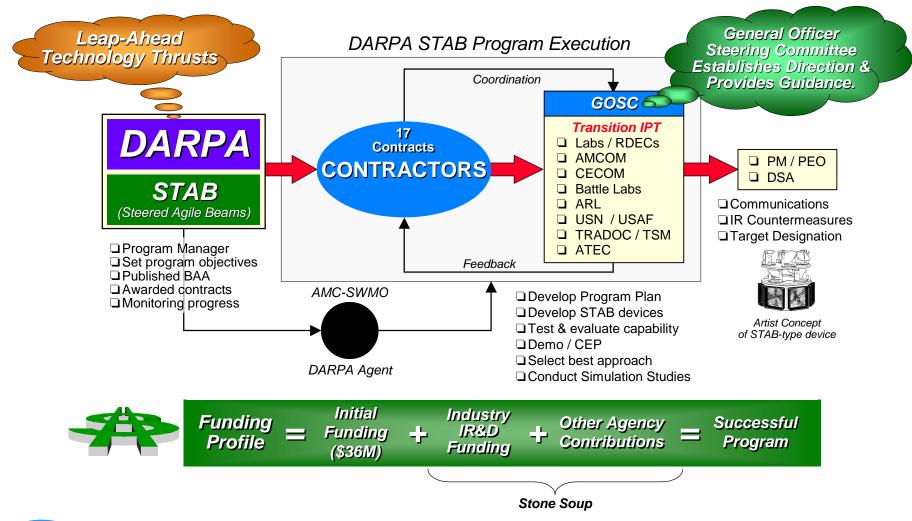
- □ Proven Technology
- ☐ Track Multiple Targets
- Multiple Simultaneous Engagements
- □ Agile / Rapid Tracking
- ☐ Direct Multiple Interceptors
- □ IFF Designations

Hemispherical Target Scanner

- □ Agile / Rapid Pointing
- □ Accurate Positioning
- ☐ IFF Potential
- ☐ Track Multiple Objects
- BDA Input
- □ Early Warning
- □ AD Targeting Data
- ☐ Air Traffic Controller
- ☐ Track Ground Vehicles
- □ Perimeter Security
- □ Proximity Fusing

TECHNICAL APPROACH TO PROGRAM IMPLEMENTATION

- Multi-service involvement is essential.
 - * All services will benefit (Army, Navy, Air Force, Marines).
 - * Requires broad base of funding for joint interoperability.
- □ Overall direction will be provided by a General Officer Steering Committee (GOSC):
 - * Establishes program direction.
 - * Provides guidance for service implementations.
 - * Assesses funding requirements and sources.
- ☐ Magnitude of program calls for Integrated Product Team (IPT) approach.
 - Multiple applications of STAB technology.
 - * Crosses many service / organization boundaries.



TRANSITION METHODOLOGY

DARPA's STAB Program Development and Transition Involves Many Service Agencies

CORE IPT ACTIVITIES

- □ The Communications IPT monitors and supports the work of all contractors developing STAB technologies.
- The IPT has representation from key government agencies.
- ☐ AMC-SWMO (Brian Matkin) is the DARPA agent for the transition of STAB communications technology to the services.
- □ AFWAL (Cpt Bradley Rennich) is the DARPA agent for transitioning STAB technology into IRCM and multiple target designation.

IPT MEMBERSHIP

NAME	ORGANIZATION	TEL. NO.	E-MAIL
Brian Matkin	AMC-SWMO	256-842-8912	brian.matkin@redstone.army.mil
Neil Vallestero	CECOM	732-427-2804	valleste@mail1.monmouth.army.mil
Mike Lovern	SPAWAR (Navy)	619-553-3724	Lovern@spawar.navy.mil
Cpt Bradley Rennich	AFRL / SNJM	937-255-9614 x266	Bradley.Rennich@wpafb.af.mil
Maj Anthony Townsend	Ft. Gordon	706-791-8327	Townsena@bcblg.gordon.army.mil
Tom Mims	Ft. Gordon	706-791-2800	Mimst@bcblg.gordon.army.mil
LTC Chris Pate	SARDA	703-604-7021	PateM@sarda.army.mil
Mike Toscano	OSD (Land Warfare)	703-697-0854	toscanom@acq.osd.mil

STAB TRANSITION PLAN

The key to fielding a STAB
system is to clearly defining a
user and having a plan to
transition the technology.

A preliminary draft of the STAB
transition plan has been
developed.

- ☐ The plan applies to all DARPA STAB technology applications:
 - * Communications.
 - * Target Designation.
 - * Optical Countermeasures.
- □ Core IPT is responsible for content and revisions of plan.

	Subject	Pa
I.	INTRODUCTION	
	A. Objective of Transition Plan	
	B. Role of AMC-SWMO	
	C. Steered Agile Beams Program	
	STAB Objectives	
	Program phases	
	System Description / Capabilities	
II.	ARMY APPLICATIONS FOR STAB TECHNOLOGY	
	A. Benefits	
	B. STAB Support of Communications	
	C. STAB Support of Target Designation	
	D. STAB Support of Optical Countermeasures	
III.	TRANSITION STRATEGY	
	A. Potential Army Materiel Development Advocates	
	B. Establishing Army Advocacy	
	Letters of Intent	
	Memorandum of Agreement	
	C. Points of Contact & Coordinating Requirements	
IV.	STAB TRANSITION ACTIVITIES	
	A. Keeping the Army Team on Track	
	B. Program Management Responsibilities	
	C. Document Development	
	D. Operational Concepts for Users	
	E. Monitoring Progress of STAB Program	
	F. Technical Studies and Analyses	
	G. STAB Evaluation Test Bed	
	H. Briefing & Updating Army User Community	
	I. Identifying Funding Support for STAB	
٧.	SUMMARY	
Α.	POINTS OF CONTACT	A
В.	PROGRAM ACTIVITIES	Е

OTHER STAB APPLICATIONS

- ☐ STAB technology has many military & commercial applications.
- □ Any task requiring precision location and tracking of distant objects or transmitting vast amounts of data is a potential STAB application.

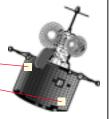
CONSIDER JUST TWO POTENTIAL NASA STAB APPLICATIONS

Hit Avoidance in Space

* Systems in space are confronted with a vast array of debris (manmade & natural).

* Precise debris orbit data is essential.

- STAB can detect, acquire and track multiple debris objects simultaneously providing precise orbits data
- Pulse jets on a space system can be activated to avoid a collision.
- The precision of STAB sensing can also be used during docking operations.

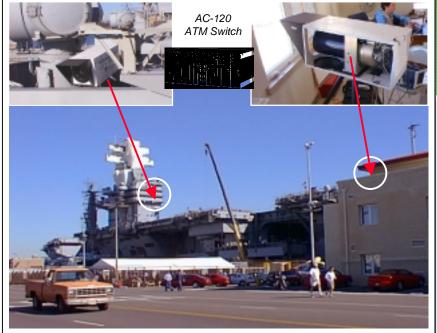

Remote Stress / Motion Measurements

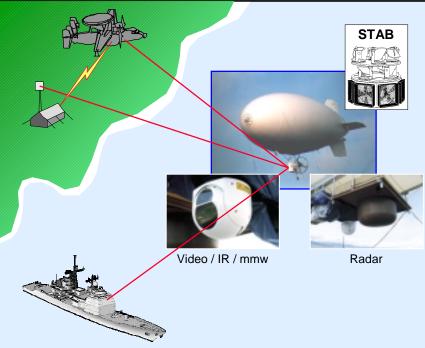
- * Space systems undergo unique stresses due to motion, location in orbit, and severe temperature changes.
- * STAB can be used to measure relative motion of space systems, and detect stresses related to torsion, bending, and elongation.
- * Precision data from a space-borne STAB device can easily download stress and motion data for analysis by a ground or space based team.

STAB

Measuring stresses and motion $(x, y, z, v, a, \alpha, \theta, etc.)$

OTHER STAB APPLICATIONS




THE NAVY HAS CONSIDERABLE INTEREST IN LASERCOM

Ship-to-Pier Communications

- * Ship-to-Pier communications are an essential element of Navy standard operating procedures.
- * STAB could easily replace current larger laser systems and provide a broader capability to transmit data to fixed and moving ground-based or sea- and air-borne elements.

Robotic Airship Applications

- * Untethered robotic airships offer the Navy an enhanced range capability to communicate and accurately locate friendly or enemy elements.
- * Integrating STAB into the airships would provide for a tactical internet capability to transmit and receive large amounts of data on call as needed.

SUMMARY

STAB

Program

- □ Laser Communications is an established technology:
 - Off-the-shelf / mature for routine applications.
 - Widely associated with fiber optic systems.
- Military LaserCom has some hurdles to clear:
 - * Eye safe operation with appropriate power / bandwidth.
 - * Acquisition & tracking of T/R units (3D environment):
 - Automatic / autonomous capability desired.
 - Analogous to phased array radar technology concept.
 - * Adequate range for mounted / dismounted operations.
 - * Integration with Army-wide SINCGARS / MSE system.
- □ Applications for LaserCom are compelling:
 - * Stealth capability during radio silence.
 - * Enhanced frequency allocations reduce conflicts.
 - * Tactical LaserCom internet offers significant opportunities.

MULTI-SERVICE TACTICAL APPLICATIONS

STAB -- A DARPA TECHNOLOGY INITIATIVE

